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Abstract—Similar to any spoof detection systems, power
grid monitoring systems and devices are subject to various
cyberattacks by determined and well-funded adversaries. Many
well-publicized real-world cyberattacks on power grid systems
have been publicly reported. Phasor Measurement Units (PMUs)
networks with Phasor Data Concentrators (PDCs) are the
main building blocks of the overall wide area monitoring and
situational awareness systems in the power grid. The data
between PMUs and PDC(s) are sent through the legacy networks,
which are subject to many attack scenarios under with no, or
inadequate, countermeasures in protocols, such as IEEE 37.118-
2. In this paper, we consider a stealthier data spoofing attack
against PMU networks, called a mirroring attack, where an
adversary basically injects a copy of a set of packets in reverse
order immediately following their original positions, wiping out
the correct values. To the best of our knowledge, for the first time
in the literature, we consider a more challenging attack both
in terms of the strategy and the lower percentage of spoofed
attacks. As part of our countermeasure detection scheme, we
make use of novel framing approach to make application of a
2D Convolutional Neural Network (CNN)-based approach which
avoids the computational overhead of the classical sample-based
classification algorithms. Our experimental evaluation results
show promising results in terms of both high accuracy and true
positive rates even under the aforementioned stealthy adversarial
attack scenarios.

Index Terms—CNN, Deep Learning, PMU, PMU Spoofing,
PMU forged data, Mirroring Attack.

I. INTRODUCTION

The volume and intensity of cyberattacks are increasing
against all computational systems, including especially the
critical infrastructure by the highly determined, focused, and
well funded adversaries. The smart grid, enhanced tradi-
tional power grid with computational and communications
improvements, is not an exception [1] to the ever growing
attack vectors, as it is an attractive target [2] with lethal
and vital economic and social consequences by means of
disruption to electricity delivery [3]. World Economic Forum’s
2018 report [4] emphasizes the increasing cyberattacks on
the critical and strategic infrastructure that may result in
disrupting the society. Addressing these critical security and
privacy assurances in the smart grid is emerging as an urgency
as a result [5]–[12].

An important enabler of the Smart Grid initiatives is the
enhanced use of sensing and measurement capabilities. Phasor
Measurement Units (PMUs) are the advanced, accurate, and
synchronized measurement devices to take the situational
awareness to a new level. While the traditional Supervisory
Control And Data Acquisition (SCADA) measurements are
taken every 2-4 seconds, PMU reports them 30-120 times per

second with GPS time stamps. The PMU-enabled conceptual
model of wide-area monitoring, protection, and control sub-
system is illustrated [12] in Figure 1.

Fig. 1. A conceptual framework for a wide-area monitoring, protection, and
control (WAMPAC) system for the Smart Grid made possible by PMUs [13].

PMUs transmit data to the Phasor Data Concentrator (PDC)
by using IEEE 37.118-2 synchrophasor protocol. Data re-
ceived at PDC is then used for state estimation or histor-
ical analysis. It is relatively more recently recognized that
the PMU data, especially over the IEEE 37.118-2 protocol,
which has no security mechanisms [14], has many vulnera-
bilities [15], [16], such as transport layer attacks [17], data
tampering attacks [18], etc.

In this paper, we consider a PMU data collection network
where the threat environment assumes a compromised PMU
injecting spoofed data into the network to corrupt, or disrupt
or confuse the state estimation and the situational awareness
of the overall power grid. We focus on a specific attack,
mirroring attack, with both plain from the literature and novel
stealthier strategies, whose detailed definition are given in
Section III. As a countermeasure, we develop a novel frame-
based transformation of the data to invoke efficient classifica-
tion through 2D Convolutional Neural Network (CNN) with
augmentation. Our performance evaluation results provide
promising results in terms of accuracy and true positive rates
even under the enhanced attack scenarios in terms of the
strategy and the lower intensity of forged packets.

The rest of the paper is organized as follows: Section II
presents the related work towards spoofing cyber attacks in
the Smart Grid. Section III focuses on the PMU data spoofing



with the threat model, dataset, and attack vector details. The
Section IV introduces the machine learning methodologies
for detecting the PMU spoofing in terms of the mirroring
attack together with the countermeasures using frame-based
2D Convolutional Neural Network (CNN) approach under
a novel enhanced attack scenario. Section V includes the
experimentation setup together with the simulations and the
discussion of these results. Concluding remarks and future
work ideas are given in Section VI.

II. RELATED WORK

Table I shows the most common spoofing attacks on
PMU data: repeat last value attack [19], [20], time dilation
attack [19]–[24], mirroring attack [19], [20], [23], play back
attack [21], [22], data drop attack [21], [22] polynomial fit
attack [23], and general false data injections attack [21], [25],
[26].

There defensive approaches both for intentional attacks by
adversaries and unintentional faults in the system can be
summarized as follows: [19], [20] use SVM and Artificial
Neural Network (ANN) to detect anomalies relying on the
highly-correlated inter-PMU and intra-PMU parameters. [23],
[24] focus on SVM.

In [21], authors artificially create their datasets and use
Recurrent Neural Networks (RNN) and Long short-term mem-
ory neural network (LSTM) to detect False Data Injection
Attacks (FDI) against PMU based state estimators. Same
authors in [22] employ Symbolic Aggregation Approximation
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THE MOST COMMON PMU ATTACKS FROM THE LITERATURE.

in data preprocessing phase. For detection of these attacks,
text mining using Bag of Pattern and Multivariate Bag of
Pattern are used and compared. The feature extraction is
obtained through Principal Component Analysis (PCA).In
[25] authors detect FDI attacks using Rule Based Autoregres-
sive Moving Average (ARMA) and Autoregressive Integrated
Moving Average (ARIMA) applied on calculations based on
Kirchoffs laws.

In [28] authors use different types of clustering approaches
to identify fault events in the power grid. The selected fault
events are divided into: single-line-to-ground faults, line-to-
line faults, three-phase faults and no-fault data. They use
two different clustering approaches. The first is time series
clustering that uses hierarchical clustering for which they
claim to be the most appropriate in case of time series

data. The other clustering method is instantaneous clustering
that uses is based on k-means and Density Based Spatial
Clustering of Applications with Noise (DBSCAN). In [29]
authors use k-nearest neighbor (KNN), binary SVM, multi-
SVM and Decision Trees (DT) to detect events based either
on event zone or event type. This approach requires field
knowledge in order to correctly apply event labeling on the
PMU data.

In [30] authors are completely agnostic to the data being
transmitted between PMUs and PDC. Instead of checking the
validity of the data they use k-means clustering to separate the
network traffic not typical for PMU to PDC communication.

In [31] authors consider single-phase, two-phase and three
phase types of faults. They also consider short circuits and
ground for each individual phase. They applied Linear Dis-
criminant Analysis (LDA), kNN, SVM and ANN machine
learning approaches on simulated IEEE 123-bus distribution
system.

In [26] phasor measurement unit data attacks (PMUDA)
by using different machine learning algorithms that can be
used for supervised and semi-supervised learning. The super-
vised machine learning algorithms are multi-layer perceptron
(MLP), SVM, KNN, AdaBoost+, C4.5 DT and XGBoost. The
semi-supervised learning techniques are deep autoencoders
(DA) and one-class SVM (OC-SVM).

In [32] authors use Generative Adversarial Networks
(GAN) and Neural ordinary differential equations (NODE)
to artificially generate PMU data events. They observe three
event types: Bus Fault, Line Tripping and Load shedding.
The simulation environment includes a 10-machine IEEE 39
bus system. To classify events they use PCA and Discrete
Wavelet Transformation(DWT) SVM kernels. In [33] authors
use SVM with online learning in order to predict short-term
voltage instability on IEEE 39 bus based network.

III. PMU DATA SPOOFING

A. Threat Model

We consider a PMU network subsection from Figure 1
where multiple PMUs send sensed data to a PDC. Assuming
a compromised PMU, an attacker aims at disrupting the
monitoring subsystem by means of falsifying data stealthily.
Our focus in this paper is on a specific spoofing technique,
called mirroring attack (MA), as introduced in [23], [24] and
used also used in [19], [20]. MA is a type of attack where
the adversary selects the last valid data in a sequence of n

measurements and replays them in reversed order, as shown
in Figure 2. MA is designed to be local, i.e. on a specific
PMU, based on historical PMU data and to cause no dis-
continuity of the measurements. These attack characteristics
makes detection harder by design.

B. Dataset

We make use of the École Polytechnique Fédérale de
Lausanne (EPFL) dataset [34], [35], collected from their
own campus transmission network with 7 PMUs collecting
the following information: time stamp (epoch time format),
fraction of the seconds in msec, latency in sec, rate of change
of frequency in Hz/s, and magnitudes of three phase voltages



Fig. 2. Mirroring Attack: The original sequence of the PMU data on the left
is forged on the right by reverse replaying S5 through S1 in place of the
original S6 through S10, respectively.

and currents with phase angles in radians. In later sections, we
will be comparing our approach to that of [20] and [19], whose
data (Bonneville BPA) is not publicly available. However,
from the descriptions in [20] and [19], we have concluded that
both BPA and EPFL data are similar except for frequency, 50
versus 60 Hz which does not make a change in the analysis.

C. Attack Vector and Scenarios

In this work, we use a 24-hour block of EPFL from March
15, 2019 and assume that only one PMU out of seven is under
the mirroring attack. We generate the simulated MA by means
of two different scenarios by changing the number of attacks
(NOA) or spoofed readings for each hour NOAh: (i) 50+
attack, (ii) perfect attack.

In the first attack scenario, we randomly select time points
(ta) in each hour where we start spoofing with a minimum
number of attacks (minNOA) set to 50. The maximum number
of attacks (maxNOA) after this time point is also randomly
generated. Once we determine these boundaries, we start mir-
roring rNOA readings starting from ta by overwriting those
many samples, where minNOA = 50 ≤ rNOA ≤ maxNOA.
Therefore, we coin this scenario as 50+ to indicate that at
least 50 samples are mirrored for every ta once the attack
is initiated. We continue to spoof at least 50 samples at
different times until we hit the hourly attack count, NOAh.
Once we spread all mirroring attacks for all hours with the
same principle, one data set becomes ready to be used in
a prediction model. It is worth noting that we keep track
of our earlier attacks so that later attacks do not cause
distortion on the previously designated mirrored signals due
to randomization.

While the 50+ scenario incorporates several random fea-
tures to create a stealthier attack, our second scenario, termed
the perfect attack, relaxes the randomization by removing
minNOA and maxNOA from the parameter list. Instead,
selects time points, ta

2
, with the same NOAh in mind, but

guarantees that ta ∈ Z. In other words, at every half second
it mirrors first 25 readings so that remaining 25 readings in
the same second time frame become mirror "image" of the
first half. Since there are 50 samples in a second and first

half is exactly mirrored within the same time frame, we call
this setup as "perfect scenario".

In both attack models, NOAh is changed from 500 to
3,000 with the increments of 500, corresponding to 0.3% to
1.7%, respectively with highly unbalanced spoofed packets
to simulate realistic stealthy attacks. Furthermore, we note
that our scenarios have significantly less number of attacks
compared to earlier studies [19], [20] which not only have a
higher percentage of spoofed packets (∼ 50%), but also follow
a regular and simpler pattern, such as spoofing the second half
of every second without any randomness. Hence, we tackle a
much more challenging attack vector in this study.

IV. MIRRORING ATTACK DETECTION METHODOLOGY

A. Frame Approach

By the very definition of the mirroring attack, it duplicates
readings and inserts them at different points in the time series
data. As a result, conventional classification methods face ad-
ditional challenge of differentiating these identical/duplicated
values. In order to avoid this complicated dichotomy, we
aggregate measurements into one second frames of data and
apply the classification at that coarser granularity level, i.e. at
frame-level versus individual data points in the conventional
methods. While we may have to be discarding some good
observations in a frame as a result of a few bad observations,
the overall impact of these deletions of good observations is
not expected to be significant due to the statistical nature of
the time series data; it is very well-known fact that omissions
of individual values will not have a significant impact on the
statistical parameters of the overall system.

Our frame-based approach turns the problem into an image
classification task through a transformation from samples to
image-like frames as illustrated in Figure 3. In particular, it
takes P PMUs for N variables with a sampling rate, S, and
results in T frames that are S×P ×N

︸ ︷︷ ︸
in size. In our case, out

of 24-hour measurements (4,320,000 samples) we generate
86,400 frames or images that come with a size of 50×63 for
S = 50, P = 7, and N = 9.

Fig. 3. Model development pipeline using CNN architecture on transformed
data. Each pixel represent a cell in our data set. Some frames have mirrored
images.

Even though we do not have real images in our frames,
we treat every single reading as a pixel value and our goal is
to determine whether a frame hosts mirroring pixels (attacks)
in the current context. In other words, we assume mirrored



pixels (a time slice in one PMU) form an object in a given
image, and the reflection of the object creates a pattern to help
us identify attacked frame.

One major challenge of this approach for 50+ scenario
is that reflections of our imaginary objects may overflow to
the adjacent frame. Since we spread the attacks in a random
fashion, some frames may end up with a incomplete portions
of mirrored attacks. This not only poses a challenge to a
classifier with the absence of expected pattern, but also calls
frames with very few mirrored samples spoofed. In the perfect
scenario, however, we still incorporate randomization for the
timing of the attack, but we guarantee that spoofed frames
have perfect reflections of imaginary objects without any
overflows.

B. Machine Learning Algorithms

Considering our frame-based transformation of the classifi-
cation problem, we exploit a deep neural network (DNN) ar-
chitecture specialized for images; 2-dimensional convolutional
neural network (CNN). enhanced through data augmentation
to handle frame overflow mentioned earlier.

1) 2D CNN: CNN is a special type of Artificial Neural
Network (ANN) or DNN because of its multiple layers
including convolutional and pooling layers [36], [37]. CNN’s
advantage comes from the fact that it learns and extracts
image features through its convolutional and pooling layers
which are then utilized for classification [38]. Therefore,
CNNs are very effective deep learning (DL) models for image
classification and object detection [39].

Our network architecture has seven layers, as shown in
Figure 3. The first layer is a 2D convolutional layer with a
kernel size of 3x3 and 256 filters with the activation function
of rectified linear unit (RLU). The second layer is a pooling
layer with a 2x2 pool size. The third and forth layers are
2D convolutional and pooling layers that follow the same
configuration. The sixth is the flattening and the seventh is
the dropout layer using a drop rate of 0.5. Finally, the output
is a dense layer with sigmoid activation function.

2) Data Augmentation: Data Augmentation (DA) is a tech-
nique to create artificial variations of existing images to enrich
a data set and increase its size by using several transformation
methods such as crop, shift, rotation, and flip [40]. It also
helps reduce overfitting [41]. To handle shifting duplicates due
to randomization, we use the shift option of data augmentation
in Keras [42].

We train our models on 6 hours of data and test on the
remaining 18 hours on the same day. Further, we incorporate
data augmentation into perfect scenario for a stealthier attack.
Namely, we expose perfect scenario to data augmentation
during the training stage to prepare it for any future variations
of mirroring attacks which might be found in 50+ attacks.
Then, we test our data-augmented perfect attack model on 24
hours, 50+ attack data.

V. EXPERIMENTATION

A. Simulation Setup

The simulations are run on a server with 128GB RAM and
two Intel Xeon Silver 4208 processors. Each processor has 8

cores and 16 threads which gives a total of 32 simultaneous
threads running on the training and testing processes.

We explore four different train-test combinations which
show not only the impact of the attack ratio, but also the
improvement in predictions as we incorporate different tech-
niques, as shown in Figure 4 and detailed below: (1) Train on
6 hours of 50+ attack, test on the remaining 18 hours, (2) Train
on 6 hours under the perfect attack, test on the remaining 18
hours, (3) Train on 6 hours under the perfect attack, test on
the full 50+ attack, and (4) Train on 6 hours under the perfect
attack with augmentation, test on the full 50+ attack.

Fig. 4. Four different test-train combinations for the simulations.

B. Impact of Attack Ratio

We start our simulations with 50+ scenario with very small
number of hourly attacks (500) corresponding to 0.3% of
24-hour measurements. Then, we continue increasing hourly
attack counts with 500 increments until we spoof 40% of the
data so that our attack ratio can be comparable with earlier
studies [19], [20] in terms of the spoofed packet percentage.
To highlight the impact of the attack ratio, we develop a CNN
model for each data set varying with different ratio based on
6 hours of data, and test it for the remaining hours. Since
accuracy calculations are dominated by high true negative
rates (TNRs) due to the highly unbalanced data sets, we
shed light on true positive rates (TPRs) to flag spoofed time
segments. In Figure 5, we observe that our CNN models start
to perform better after an attack ratio of 5% and hit 98% TPR
for 40% attack ratio for the 50+ attack that is still less than
that of aforementioned studies. Figure 5 clearly illustrates that
when the attack ratio is high, as used in [19], [20], detection
is rather trivial. Our focus in this paper is on the less dense
and stealthier attack cases with lower percentages.

When we focus on stealthier attacks for 50+ simulations
we calculate the average TPR and its standard deviations to
observe the effect of random initialization on the performance
and measure the robustness of DL models in detecting the
spoofed data. Figure 6 shows an increasing pattern for 50+
attack (bottom-most green curve, corresponding to Fig. 4’s
first scenario), but not good enough to serve as a reliable
predictor with very low TPR rates.



Fig. 5. True Positive Rate (TPR) as a function of increasing attack percentage
for the 50+ attack scenario, the first combination from Fig. 4.

Fig. 6. TPR as a function of of increasing attack percentage for the four
different combinations from Fig. 4, respectively.

C. Perfect Scenario

As we noted earlier perfect scenario relies on an ideal
mirroring for a given frame and we aim to determine those
frames through a CNN model again. Thus, in this second
simulation from Figure 4, we follow the 6 vs. 18-hour split
for training and testing which have perfect hourly attacks on
a random basis. In Fig. 6 we observe that models developed
on perfect scenario (second curve from the bottom) show
an improvement over 50+ scenario with increasing TPRs as
attack ratio goes up.

D. Utilization of Perfect Scenario for 50+

In the first two simulations, we observe that 50+ attack sce-
nario cannot be handled effectively and the model developed
on perfect scenario has relatively higher TPR. In this step
(the third from Fig. 4), therefore, we attempt a hybrid model
where a model is trained on perfect scenario and utilized on a
different attack scenario, i.e., 50+. In doing so, we aim to
teach a model how the overall pattern looks like and test
its capability on a stealthier attack. We find out that this
approach can detect spoofed frames with higher TPRs when
compared to the first pipeline where a model on 50+ scenario
attempt to predict other 50+ attacks. It should be noted that for
extremely stealthy attacks this approach still suffers, but when
considering a test case over the course 24 hours it performs

40-60% better than earlier case which can be inferred from
Figure 6.

We further exploit DL features for our CNN models to
incorporate data augmentation. We augment the model that
relies on perfect scenario. Thus, our model learns possible
(vertical) shifts of the perfect mirroring attacks in a given
second and can extrapolate shifted readings which emulates
overflowing attacks to consecutive frames. When we test this
approach (the last one from Fig. 4) on the 50+ scenario
data set, we observe further improvements in TPRs that are
presented in Figure 6. While this approach cannot achieve
more than other models for the hourly attack count of 500,
which is very stealthy, it reaches 80% TPR in the next hourly
attack count, 1000, which is still very low in percentage. As
expected, it performs better as we increase the hourly attack
count. This phenomenon can also be observed in Figure 6
where the TPR reaches 91% with standard deviation less
than 0.01 which also shows the robustness of the model. We
observe one exception for 1000 attack count where we have
higher standard deviation which might be due to the random
nature of the attacks.

VI. CONCLUSION

As part of the smart grid enhancement to fully take advan-
tage of the communications and computational advancements,
the attack surface is expanding, especially by the highly
motivated adversaries and the attractiveness of the severe
consequences of such attacks. As a critical monitoring and
sensing of the smart grid, the protection of PMU networks
becomes more important than ever. In this paper, we have
introduced a stealthier mirroring attack, for the first time in
the literature to the best of our knowledge. To counter such an
attack, we proposed a novel computationally efficient frame-
based 2D CNN approach. Our preliminary experimental eval-
uation results show promising results in terms of accuracy and
true positive rates. One potential future research direction is
to explore other sample-based machine learning classification
techniques to compare against our 2D CNN approach. Finally,
a detailed study of the computational and spatial overhead of
the our approach against the others would be an interesting
extension of the current work.
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[12] A. Huseinović, S. Mrdović, K. Bicakci, and S. Uludag, “A survey of

denial-of-service attacks and solutions in the smart grid,” IEEE Access,
vol. 8, pp. 177 447–177 470, 2020.

[13] V. Terzija, G. Valverde, P. Regulski, V. Madani, J. Fitch, S. Skok,
M. M. Begovic, and A. Phadke, “Wide-Area Monitoring, Protection,
and Control of Future Electric Power Networks,” Proc. of the IEEE,
no. 1, pp. 80–93, jan.

[14] S. M. S. Hussain, S. M. Farooq, and T. S. Ustun, “A security mechanism
for ieee c37.118.2 pmu communication,” IEEE Tran. on Industrial

Electronics, vol. 69, no. 1, pp. 1053–1061, 2022.
[15] C. Tu, X. He, X. Liu, and P. Li, “Cyber-attacks in pmu-based power

network and countermeasures,” IEEE Access, vol. 6, pp. 65 594–65 603,
2018.

[16] R. Khan, K. Mclaughlin, D. Laverty, and S. Sezer, “Design and
implementation of security gateway for synchrophasor based real-time
control and monitoring in smart grid,” IEEE Access, vol. 5, pp. 11 626–
11 644, 2017.

[17] Y. Wang, T. T. Gamage, and C. H. Hauser, “Security implications of
transport layer protocols in power grid synchrophasor data communi-
cation,” IEEE Tran. on Smart Grid, vol. 7, no. 2, pp. 807–816, 2016.

[18] M. N. Aman, K. Javed, B. Sikdar, and K. C. Chua, “Detecting data
tampering attacks in synchrophasor networks using time hopping,” in
IEEE ISGT-Europe. IEEE, 2016, pp. 1–6.

[19] J. Jiang, X. Liu, S. Wallace, E. Cotilla-Sanchez, R. Bass, and X. Zhao,
“Defending against adversarial attacks in transmission- and distribution-
level pmu data,” 2020.

[20] J. Jiang, “Defending against adversarial attacks in electric power
systems: A machine learning approach,” Washington State University,
no. 1, 2019.

[21] S. Basumallik, R. Ma, and S. Eftekharnejad, “Packet-data anomaly
detection in pmu-based state estimator using convolutional neural
network,” International Journal of Electrical Power & Energy Systems,
vol. 107, pp. 690 – 702, 2019.

[22] R. Ma, S. Basumallik, and S. Eftekharnejad, “A pmu-based data-driven
approach for classifying power system events considering cyberattacks,”
IEEE Systems Journal, vol. 14, no. 3, pp. 3558–3569, 2020.

[23] J. Landford, R. Meier, R. Barella, S. Wallace, X. Zhao, E. Cotilla-
Sanchez, and R. B. Bass, “Fast sequence component analysis for attack
detection in smart grid,” in 5th SMARTGREENS, 2016, pp. 1–8.

[24] X. Liu, S. Wallace, X. Zhao, E. Cotilla-Sanchez, and R. B. Bass,
“Episodic detection of spoofed data in synchrophasor measurement
streams,” in IEEE IGSC, 2019, pp. 1–8.

[25] B. Chen, S. i. Yim, H. Kim, A. Kondabathini, and R. Nuqui, “Cyber-
security of wide area monitoring, protection, and control systems for
hvdc applications,” IEEE Tran. on Power Systems, vol. 36, no. 1, pp.
592–602, 2021.

[26] J. Wang, D. Shi, Y. Li, J. Chen, H. Ding, and X. Duan, “Distributed
framework for detecting pmu data manipulation attacks with deep
autoencoders,” IEEE Tran. on Smart Grid, vol. 10, no. 4, pp. 4401–
4410, 2019.

[27] A. Huseinovic, Y. Korkmaz, H. Bisgin, S. Mrdovic, and S. Uludag,
“PMU Spoof Detection via Image Classification Methodology against
Repeated Value Attacks by using Deep Learning,” in 28th Int’l Conf.

on Inf., Comm. and Automation Tech (ICAT), Sarajevo, Bosnia and
Herzegovina, 2022.

[28] E. Klinginsmith, R. Barella, X. Zhao, and S. Wallace, “Unsupervised
clustering on pmu data for event characterization on smart grid,” in 5th

SMARTGREENS, 2016, pp. 1–8.
[29] A. Shahsavari, M. Farajollahi, E. M. Stewart, E. Cortez, and

H. Mohsenian-Rad, “Situational awareness in distribution grid using
micro-pmu data: A machine learning approach,” IEEE Tran. on Smart

Grid, vol. 10, no. 6, pp. 6167–6177, 2019.
[30] P. Donner, A. S. Leger, and R. Blaine, “Unsupervised machine learning

for anomaly detection in synchrophasor network traffic,” in 2019 North

American Power Symposium (NAPS), 2019, pp. 1–6.
[31] F. L. Grando, A. E. Lazzaretti, M. Moreto, and H. S. Lopes, “Fault

classification in power distribution systems using pmu data and machine
learning,” in 2019 20th Int Conf on Int Sys App to PS (ISAP), 2019,
pp. 1–6.

[32] X. Zheng, B. Wang, D. Kalathil, and L. Xie, “Generative adversarial
networks-based synthetic pmu data creation for improved event classi-
fication,” IEEE Open Access Journal of Power and Energy, vol. 8, pp.
68–76, 2021.

[33] “Pmu-based voltage stability prediction using least square support
vector machine with online learning,” Electric Power Systems Research,
vol. 160, pp. 234–242, 2018.

[34] EPFL. Epfl campus pmu dataset.
[35] M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. Dario Flores, J.-Y.

Le Boudec, M. Mohiuddin, M. Paolone, P. Romano, S. Sarri, T. Tesfay,
D.-C. Tomozei, and L. Zanni, “Real-time state estimation of the epfl-
campus medium-voltage grid by using pmus,” in IEEE ISGT, 2015, pp.
1–5.

[36] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on

Engineering and Technology (ICET), 2017, pp. 1–6.
[37] U. Michelucci, Advanced Applied Deep Learning. Apress, 2019.
[38] C. Zheng, D.-W. Sun, and L. Zheng, “Recent developments and appli-

cations of image features for food quality evaluation and inspection–a
review,” Trends in Food Science & Technology, vol. 17, no. 12, pp.
642–655, 2006.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-

tion processing systems, vol. 25, 2012.
[40] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-

tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48,
2019.

[41] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv preprint arXiv:1712.04621,
2017.

[42] F. Chollet et al., “Keras,” https://keras.io, 2015.

https://keras.io

	Introduction
	Related Work
	PMU Data Spoofing
	Threat Model
	Dataset
	Attack Vector and Scenarios

	Mirroring Attack Detection Methodology
	Frame Approach
	Machine Learning Algorithms
	2D CNN
	Data Augmentation


	Experimentation
	Simulation Setup
	Impact of Attack Ratio
	Perfect Scenario
	Utilization of Perfect Scenario for 50+

	Conclusion
	References

